CoH₃ The Hauser-Feshbach code

T. Kawano Theoretical Division, Los Alamos National Laboratory

CoH₃ - ver.3.2 Umbriel, 3.3 Titania, and 3.4 Oberon

Code Name	Year	Lines	Main Feature
Umbriel	2012	27.0K	automated ENDF-6 file production with DeCE (talk at USNDP 2012)
Titania	2013/ 2014	28.5K	advanced memory management prompt fission neutron spectrum astrophysical rate calculation
Oberon (beta)	2014	38.4K	nuclear mean-field models Engelbrecht-Weidenmueller transformation beta-delayed neutron/fission module
Miranda	?	?	

UNCLASSIFIED

Whats New in Titania and Oberon?

Memory Management

- Reduced memory size, especially for high energy calculations
- New faster scheme of dynamical memory allocation

More Outputs

Ground state and isomeric state production

New Functions / Physics

- Exclusive spectrum calculation (was ECLIPSE) merged
- Madland-Nix model prompt fission neutron spectrum
 - · including pre-fission neutron emission
- Automatic production of Maxwellian-averaged cross sections
- Nuclear mean-field models included
 - Hartree-Fock BCS and FRDM
- Kunieda's optical potential for deformed nuclei
- New width fluctuation parameterization
- Rigorous treatment of nuclear deformation in the Hauser-Feshbach model with width fluctuation
- Beta-delayed neutron/gamma/fission code supplemental

Automatic Reaction Chain Set Up and Data Pointers

Prompt Fission Neutron Spectrum Calculation

- Prompt fission neutron specti
 - Madland-Nix model
 - multi-chance fission
 - pre-fission evaporation neutron spectra
- Exclusive prefission neutrons
 - similar to the other exclusive spectrum calculations in CoH

Mean-Field Models Added To CoH₃

- FRDM: Finite-Range Droplet Model
- HF-BCS: Skyrme Hartree-Fock BCS Model
 - a la Bonneau, not French-free anymore
- can be used for:
 - direct/semidirect capture calculation
 - nuclear deformations for about 9,000 nuclei
 - single-particle state density in the pre-equilibrium process by Strutinsky's method

¹⁹⁷ Au

... and so on

FRDM

HF-BCS

UNCLASSIFIED

Combining FRDM and HF-BCS

Use FRDM potential as an initial potential in the HF iteration

- iteration converges quickly
- can avoid being trapped by local minima
- if spherical WS is used, HF iteration can go to either prolate/oblate shape depending on the initial condition

UNCLASSIFIED

Improved Statistical Model Calculation

- New width fluctuation model based on GOE
 - ND2013 paper, T. Kawano, P. Talou
- M1 scissors mode in the photon strength function

FRDM + Kunieda Potential Coupled-Channels Calculation

UNCLASSIFIED

Hauser-Feshbach with Strongly Coupled Channels

- Long standing issue: Statistical Model + CC
 - Statistical Model = Hauser-Feshbach + width fluctuation

Deformed Case

Engelbrecht-Weidenmueller Transformation

- diagonalization of CC scattering matrix
- fluctuation calculation in the channel space
- back-transformation to cross section space

UNCLASSIFIED

EW Transformation for Inelastic Scattering Cross Section

U-238 + n

- increase in the CN inelastic cross section, due to decrease in the elastic channel
- similar results by Kawano (JENDL-3.3) and Capote with ECIS (talk at ND2013)
- CoH calculation includes the all uncoupled-levels fission and capture

Conclusions

CoH Statistical Model Code Development

- Improved physics
 - nuclear structure mean-field models unified
 - consistent treatment of nuclear deformation
- ENDF evaluation
 - · prompt fission neutron spectrum, including pre-fission neutrons
 - better calculation for deformed nuclei using Kunieda-potential and FRDM/HF-BCS
- Technical development
 - · advanced memory management
 - isotope production cross section automated
 - automatic MACS calculation

